1,001 research outputs found

    Unjamming a granular hopper by vibration

    Get PDF
    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics

    Irredundant Triangular Decomposition

    Full text link
    Triangular decomposition is a classic, widely used and well-developed way to represent algebraic varieties with many applications. In particular, there exist sharp degree bounds for a single triangular set in terms of intrinsic data of the variety it represents, and powerful randomized algorithms for computing triangular decompositions using Hensel lifting in the zero-dimensional case and for irreducible varieties. However, in the general case, most of the algorithms computing triangular decompositions produce embedded components, which makes it impossible to directly apply the intrinsic degree bounds. This, in turn, is an obstacle for efficiently applying Hensel lifting due to the higher degrees of the output polynomials and the lower probability of success. In this paper, we give an algorithm to compute an irredundant triangular decomposition of an arbitrary algebraic set WW defined by a set of polynomials in C[x_1, x_2, ..., x_n]. Using this irredundant triangular decomposition, we were able to give intrinsic degree bounds for the polynomials appearing in the triangular sets and apply Hensel lifting techniques. Our decomposition algorithm is randomized, and we analyze the probability of success

    Pattern formation without heating in an evaporative convection experiment

    Get PDF
    We present an evaporation experiment in a single fluid layer. When latent heat associated to the evaporation is large enough, the heat flow through the free surface of the layer generates temperature gradients that can destabilize the conductive motionless state giving rise to convective cellular structures without any external heating. The sequence of convective patterns obtained here without heating, is similar to that obtained in B\'enard-Marangoni convection. This work present the sequence of spatial bifurcations as a function of the layer depth. The transition between square to hexagonal pattern, known from non-evaporative experiments, is obtained here with a similar change in wavelength.Comment: Submitted to Europhysics Letter

    Near-infrared photometry of isolated spirals with and without an AGN. I: The Data

    Get PDF
    We present infrared imaging data in the J and K' bands obtained for 18 active spiral galaxies, together with 11 non active galaxies taken as a control sample. All of them were chosen to satisfy well defined isolation criteria so that the observed properties are not related to gravitational interaction. For each object we give: the image in the K' band, the sharp-divided image (obtained by dividing the observed image by a filtered one), the difference image (obtained by subtracting a model to the observed one), the color J-K' image, the ellipticity and position angle profiles, the surface brightness profiles in J and K', their fits by bulge+disk models and the color gradient. We have found that four (one) active (control) galaxies previously classified as non-barred turn out to have bars when observed in the near-infrared. One of these four galaxies (UGC 1395) also harbours a secondary bar. For 15 (9 active, 6 control) out of 24 (14 active, 10 control) of the optically classified barred galaxies (SB or SX) we find that a secondary bar (or a disk, a lense or an elongated ring) is present. The work presented here is part of a large program (DEGAS) aimed at finding whether there are differences between active and non active galaxies in the properties of their central regions that could be connected with the onset of nuclear activity.Comment: Accepted for publication in Astronomy & Astrophysics Supplement Serie

    Parallel Computation of the Minimal Elements of a Poset

    Get PDF
    Computing the minimal elements of a partially ordered finite set (poset) is a fundamental problem in combinatorics with numerous applications such as polynomial expression optimization, transversal hypergraph generation and redundant component removal, to name a few. We propose a divide-and-conquer algorithm which is not only cache-oblivious but also can be parallelized free of determinacy races. We have implemented it in Cilk++ targeting multicores. For our test problems of sufficiently large input size our code demonstrates a linear speedup on 32 cores.National Science Foundation (U.S.). (Grant number CNS-0615215)National Science Foundation (U.S.). (Grant number CCF- 0621511

    CTQ 839: Candidate for the Smallest Projected Separation Binary Quasar

    Get PDF
    We report the discovery of the new double quasar CTQ 839. This B = 18.3, radio quiet quasar pair is separated by 2.1" in BRIH filters with magnitude differences of delta m_B = 2.5, delta m_R = delta m_I = 1.9, and delta m_H = 2.3. Spectral observations reveal both components to be z = 2.24 quasars, with relative redshifts that agree at the 100 km/s level, but exhibit pronounced differences in the equivalent widths of related emission features, as well as an enhancement of blue continuum flux in the brighter component longward of the Ly alpha emission feature. In general, similar redshift double quasars can be the result of a physical binary pair, or a single quasar multiply imaged by gravitational lensing. Empirical PSF subtraction of R and H band images of CTQ 839 reveal no indication of a lensing galaxy, and place a detection limit of R = 22.5 and H = 17.4 for a third component in the system. For an Einstein-de Sitter cosmology and SIS model, the R band detection limit constrains the characteristics of any lensing galaxy to z_lens >= 1 with a corresponding luminosity of L >~ 5 L_*, while an analysis based on the redshift probability distribution for the lensing galaxy argues against the existence of a z_lens >~ 1 lens at the 2 sigma level. A similar analysis for a Lambda dominated cosmology, however, does not significantly constrain the existence of any lensing galaxy. The broadband flux differences, spectral dissimilarities, and failure to detect a lensing galaxy make the lensing hypothesis for CTQ 839 unlikely. The similar redshifts of the two components would then argue for a physical quasar binary. At a projected separation of 8.3/h kpc (Omega_matter = 1), CTQ 839 would be the smallest projected separation binary quasar currently known.Comment: Latex, 23 pages including 5 ps figures; accepted for publication in A

    Diversity and distribution of type specimens deposited in the Invertebrate section of the Museum of Zoology QCAZ, Quito, Ecuador

    Get PDF
    The Invertebrate section of the Museum of Zoology QCAZ at the Pontifical Catholic University of Ecuador in Quito maintains nearly two million curated specimens, and comprises Ecuador's largest collection of native taxa. We review 1902 type specimens from 6 subspecies and 320 species in 121 genera and 42 families, currently kept in the Museum. The list includes 116 holotypes, 10 allotypes, 1774 paratypes and 2 neoparatypes. The collection of type specimens is particularly strong in the Coleoptera (family Carabidae and Staphylinidae) and Hymenoptera. However, other insect orders such as Diptera and Lepidoptera and non-insect arthropods such as Acari, Aranea and Scorpiones, are moderately represented in the collection. This report provides original data from labels of every type specimen record. An analysis of the geographic distribution of type localities showed that collection sites are clustered geographically with most of them found towards the northern region of Ecuador, in Pichincha, Cotopaxi and Napo provinces. Sites are mainly located in highly accessible areas near highways and towns. Localities with a high number of type species include the cloud forest reserve Bosque Integral Otonga and Parque Nacional Yasuni in the Amazon rainforest near PUCE's Yasuni Scientific Station. Type localities are not well represented in the Ecuadorian National System of Protected Areas. Future fieldwork should include localities in the southern region of Ecuador but also target less accessible areas not located near highways or towns. We discuss the value of the collection as a source of information for conservation and biodiversity policies in Ecuador

    Microscopic calculation of the pinning energy of a vortex in the inner crust of a neutron star

    Full text link
    The structure of a vortex in the inner crust of a pulsar is calculated microscopically in the Wigner-Seitz cell approximation, simulating the conditions of the inner crust of a cold, non-accreting neutron star, in which a lattice of nuclei coexists with a sea of superfluid neutrons. The calculation is based on the axially deformed Hartree-Fock-Bogolyubov framework, using effective interactions. The present work extends and improves previous studies in four ways: i) it allows for the axial deformation of protons induced by the large deformation of neutrons due to the appearance of vortices; ii) it includes the effect of Coulomb exchange; iii) considers the possible effects of the screening of the pairing interaction; and iv) it improves the numerical treatment. We also demonstrate that the binding energy of the nucleus-vortex system can be used as a proxy to the pinning energy of a vortex and discuss in which conditions this applies. From our results, we can estimate the mesoscopic pinning forces per unit length acting on vortices. We obtain values ranging between 101410^{14} to 101610^{16} dyn/cm, consistent with previous findings.Comment: Paper submitted for publicatio
    • …
    corecore